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Abstract. We propose a unifying model for generalised static random walks, in which each 
walk has a weight exp(-gZ(n,)"), where n, is the occupation number of a site and a and 
g are variable parameters. Special cases of this general walk include the ordinary 
(Brownian) random walk, the self-avoiding walk, the lattice Domb-Joyce model and the 
interacting random walk model recently introduced by Stanley er al. The asymptotic 
properties of the walk are studied in one dimension by effective medium arguments and 
exact enumeration methods. For repulsive correlations we find SAW behaviour, while for 
attractive correlations the model is self trapping for 1 < a  c 2 and exhibits anomalous 
diffusion, with continuously varying exponents, for 0s a < I .  In higher dimensions com- 
ments are made about effective medium predictions, and their relationship to other gen- 
eralised random walk models. 

1. Introduction 

Very recently, a number of generalised random walk models have made their way into 
the literature. The reasons for the introduction of each problem vary widely, from the 
study of superuniversal (dimension independent) properties (the interacting random 
walk of Stanley et a1 1983) to the description of polymer growth (the kinetic growth 
walk of Majid et a1 1983), and the discussion of novel critical properties in their own 
right (the generalised self-avoiding walk of Turban (1983) and the true self-avoiding 
walk (TSAW) of Amit et a1 (1983)). Although all the above models are similar in the 
sense that they incorporate correlations between steps, each of them exhibits quite 
distinct asymptotic properties. Accordingly, emphasis has been mainly given to the 
differences between the models, rather than to whether it is possible to build a unified 
picture of the mechanisms underlying the several distinct features displayed by them. 
A first step in this latter direction was the study of Duxbury et a1 (1984), where the 
qualitative features of the one-dimensional versions of the TSAW and of the interacting 
random walk of Stanley et a1 (1983) were analysed and compared to those of the 
Domb-Joyce model (Domb and Joyce 1972), and of a model based on the weighting 
of turning points, whose behaviour is related to that of an Ising spin chain. In the 
present work we make use of effective medium arguments and exact enumeration 
methods in order to discuss quantitatively the role played by a density dependent 
weighting function in the determination of asymptotic properties of generalised random 
walks. Apart from setting general conditions for the existence anomalous diffusion in 
one-dimensional systems, our results enable us to proceed one step further towards a 
unified view of the basic features of interacting random walks. More precisely, we 
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show how the model of Stanley et a1 (1983) and the Domb-Joyce model can both be 
obtained by the variation of a single parameter in a generalised weighting function. 
In higher dimensions we discuss whether our particular weighting function (and its 
approximate expression as given by an effective medium approach) may, or may not, 
represent a reduced excluded volume constraint in generalised self-avoiding walks. In 
order to do so, we make contact with the recent work of Turban (1983), Shapir and 
Oono (1984) and Guttmann et a1 (1984) on the k-tolerant self-avoiding walk. 

In what follows, we first define a generalised random walk model where the energy 
scales as the a th  power of the density, and make use of an asymptotic expression for 
the density distribution of one-dimensional random walks, recently derived by Redner 
and Kang (1983) (see also Chan and Hughes 1984, Anlauf 1984), together with effective 
medium arguments (Flory 1971, de Gennes 1979), and obtain predictions for the 
asymptotic behaviour of the one-dimensional version of the model. There is then a 
short section on effective medium arguments for the model in higher dimensions and 
with repulsive correlations. The resulting expressions have recently appeared in the 
literature in two different contexts (Turban 1983 and Majid et a1 1984) and we comment 
on the relationship between those models and ours. 

Section 4 contains the results of exact enumerations of one-dimensional walks of 
up to 21 steps. In the series generation, series for any g and a are generated from a 
set of weighted partitions which are generated once and stored, and in the series 
analysis some peculiar effects occur due to finite size and crossover effects. The results 
however confirm the predictions of the one-dimensional effective medium arguments. 
The paper concludes in § 5 with a summary and discussion. 

2. Effective medium arguments in one dimension 

Consider a generalised random walk in which each configuration with N steps is 
weighted according to the a th  power of the number of times ni a site i is visited: 

S 

W=exp -g ( n i l . ) .  ( i = l  

The sum spans all S ( S s  N + 1 )  visited sites, and the factor g is a parameter which 
varies the ‘strength’ of the correlations between steps, and can be attractive or repulsive 
(see below). The case CY = O  is the interacting random walk of Stanley e l  a1 (1983), 
while a = 2 corresponds to the lattice Domb-Joyce (DJ) model (Domb and Joyce 1972). 
The factor in the DJ model is i n i (  n, - l ) ,  but this is irrelevant, since it amounts to 
adding the same weight exp(gN/2) to all N step walks. The present model allows us 
to study the changeover between the (rather distinct) characteristics of the two models 
which takes place as a is varied from 0 to 2 .  More precisely, the model of Stanley et 
a1 (1983) displays anomalous diffusion, with exponent f, in the attractive one- 
dimensional case (Redner and Kang 1983), whereas the attractive one-dimensional DJ 
model traps itself (Duxbury et a1 1984, see also below). The question then arises as 
to what the conditions are for the onset of anomalous diffusion, and whether the 
characteristic exponent is always the same (as long as diffusion occurs) or changes 
continuously as the driving mechanisms vary. Apart from being of possible relevance 
in the context of diffusion problems, a proper understanding of this question will help 
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to clarify the role played by density correlations in establishing the different types of 
asymptotic behaviour of generalised random walks. 

We begin by considering the asymptotic probability distribution for a one- 
dimensional random walk with N steps which visits S distinct sites (Redner and Kang 
1983): 

P(N,  SI-[cos(x/(S+ l))]" xexp(-S2/2N). (2) 

If we attribute a weight given by ( I )  above as the intrinsic probability of an N step 
walk, which visits S sites and is characterised by the set of occupation numbers {q}, 
and interaction parameters g and a, we have 

S 
P ( N ,  s, {nil, 8) = P ( N ,  s) xexp (3) 

i =  I 

We note that for a < 1, 'stretched' configurations are favoured if g < 0, whereas multiple 
visits to the same site are favoured if g > 0. The situation is reversed a > 1. For g = 0 
and/or a = 1 one has the ordinary unbiased random walk. 

If we now assume that (i)  the average end-to-end distance ( R k ) " 2  is proportional 
to the average span of the walk ( S , )  (which is sensible in one dimension) and (ii) the 
average span scales with the same power of N as the most probable value of S, S,,,, 
(which is in agreement with general scaling ideas, and does not necessarily imply a 
very narrowly peaked distribution function), we can find the asymptotic behaviour by 
requiring that the logarithm of (3) above be stationary with respect to S (Redner and 
Kang 1983). 

The problem now is how to find the S dependence of (1). At this point we make 
the effective medium replacement ni + N /  S, that is, ni is replaced by an average number 
of visits to a site. Now write 

S 

( f l i ) a  + S (  N / S ) "  = S1-"N". (4) 
i = l  

With the help of (4), and using (2), the steepest descents condition for S,,, becomes 

'{ N ln[cos(&)] -=-gS'"N"} S 2  = O  
d S  

which in the limit N, S + a3 gives, 

N d / S 3 -  S I N - g (  1 - a)S-"N"  = 0. (6) 
If S grows faster than 
and one has 

it is consistent to neglect the first term on the LHS of (6), 

Smax = g (  a - 1 ) N ,  ( 7 )  

provided that (a) if a > 1, g > O ;  or (b) if a < I ,  g <O. The result (7) is consistent with 
the favourable conditions for 'stretched' configurations noted above, and we see that 
the asymptotic behaviour is always that of a one-dimensional self-avoiding walk. On 
the other hand, if S,,, grows slower than it is consistent to neglect the second 
term on the LHS of (6). We then have two cases: ( i )  for a < I and g >  0, 
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Which besides reproducing the known results for a = O  (Redner and Kang 1983), 
shows that anomalous diffusion is expected for all OS a < 1, with the a dependent 
exponent ( 1  - a ) / ( 3  - a ) .  At a = 1 one should jump discontinuously to the ordinary 
random walk behaviour. In the second case: (ii) for a > 1 and g < 0, the formal 
expression is the same as (8) above. If interpreted literally, this means that S,,, scales 
with a negative power of N. We see this as signalling self-trapping behaviour, a regime 
in which there is no longer a diverging length as N + a, therefore the scaling assump- 
tions mentioned earlier should break down. 

From the preceding arguments, we deduce the ‘phase diagram’ of figure 1, where 
ordinary random walk behaviour occurs along the broken lines, In order to check 
whether these predictions are correct, we have proceeded to exact enumeration work, 
which is reported in 0 4. However before going into this analysis, we comment on the 
application of effective medium arguments to the random walk with weights ( 1 )  in 
higher dimensions. 

3. Flory-like arguments in higher dimensions 

Recently, Turban ( 1983) has discussed a generalised self-avoiding walk, called the k 
tolerant self-avoiding walk, in which only k and higher multiple visits to a site (k  2 2 )  
are forbidden (the first mention of this class of walks appears to have been by Malakis 
(1975, 1976)). In general space dimensionality and from a Flory argument with a 
repulsive energy term similar to (4) above (where his k is substituted for our a), 
Turban obtains k dependent exponents (which approach mean field values as k + 00) 

and upper critical dimensionalities. An argument based on fractal theory is used to 
support the values found for the upper critical dimensionalities, and in one dimension 
the problem is shown to be equivalent to the SAW (which corresponds to k = 2 )  for 
any finite k. In two and three dimensions, however Turban’s findings have been 
criticised by Guttman et a1 ( 1984), who give numerical evidence from exact enumeration 
of k tolerant SAWS to support the view that the exponents remain the same as for the 
SAW for any finite k. This view is supported by the momentum space RG work of 
Shapir and Oono (1984). 

The Flory results found by Turban (1983) in fact seem to apply more naturally to 
the generalised random walk introduced here. Before showing how this arises, we 
make some comments on what might be a suitable form for the Flory energy for the 
k tolerant SAW. Our view is that however natural it seems to think of a generalised 
excluded volume condition, which becomes effective at the kth time a site is visited, 
as being represented by a k body interaction, the correspondence can not be seen as 
more than plausible. An equally plausible Flory energy, that gives predictions in 
agreement with the calculations of Guttmann et a1 (1984) and Shapir and Oono (1984), 
is Erep = ( p - c)’; where c is a constant less than or equal to p. For any c < p this form 
predicts that the behaviour is like a SAW. On the other hand, the existence of a k body 
interaction, has deeper consequences, as is well known for spin systems (see e.g. 
Toulouse and Pfeuty 19751, and it is not surprising that in that case the exponents and 
critical dimensionalities turn out to be k dependent. 

To perform a Flory approximation for the generalised weights introduced in ( 1 )  
in higher dimensions, one needs a relationship between the S used in the Flory enegy 
(4) and the average end-to-end distance measure R. If we take S = R d  (as is reasonable 
within a mean field approximation), and make the usual scaling comparison with the 
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entropy term R 2 / N ,  we get the same results as found by Turban (1984) (and also 
Majid et al 1984), that is, the upper critical dimension is given by d,= 2 a / ( a  - I ) ,  and 
the end-to-end distance exponent below this dimension is given by v =  

It is interesting to note that the higher-dimensional Flory arguments discussed 
above are only applicable to the case of repulsive correlations. This is in contrast to 
the results of § 2 where both repulsive and attractive correlations were discussed within 
effective medium arguments. For a proper treatment of the attractive region in higher- 
dimensional cases, one would need the higher-dimensional version of the probability 
distribution close to the origin, which in one dimension is given by the cosine term of 
(2) (Redner and Kang 1983). To our knowledge, such an asymptotic form is not as 
yet available for general d, and we shall not pursue this point further. 

( a + 1 ) / ( 2 - d + a d ) .  

4. Results of exact enumerations in one dimension 

We have enumerated all walks of up to 21 steps in one dimension. With the weights 
given by ( l ) ,  a computationally convenient procedure is (for a given N )  to classify 
the walks according to which partition of N + 1, into non-negative integers, is realised 
by the set { ni} of site occupation numbers of each walk. All walks that have the same 
partition have the same weight (given by ( I ) ) ,  and not all partitions occur due to 
connectivity constraints, An example is the N = 8 step generalised walks in one 
dimension, where the full 256 walks possible are grouped into just 17 partition classes. 
With the multiplicity and cumulative end-to-end squared distance for each class, one 
can proceed directly to the evaluation of (R>) and (SN) for any values of the parameters 
a and g. A table of partition data is generated for each N up to 21, the number of 
distinct partitions which occur in a 21 step walk being 455. This procedure can also 
be used in higher dimensions; the number of distinct partitions (for fixed N )  will 
increase somewhat with dimension due to weakening connectivity constraints, but is 
still easily manageable on a medium sized computer. Some sample series for the 
one-dimensional case are given in table I .  

Assuming 

(I?$)= N 2 v ,  (S,)= N s  (9) 

one can extract finite lattice estimates of v and s via the standard ratio method 

I t  is expected that the estimates for v and s will converge to the same limit as 
N + m .  In the present case we have to deal both with finite lattice and crossover 
effects; the latter being due to the fact that for a given a one has distinct asymptotic 
behaviour respectively for g = 0, g positive and g negative. In addition there is a 
variation in the expected asymptotic behaviour with a, as can be seen from figure 1. 

In figure 2 we plot our finite lattice estimates for the exponent s against tanh(g) 
as compared with the effective medium predictions ( 7 )  and (8 )  for a = 1.4, 1.0 and 0 
and two different values of N, respectively 13 and 21. A similar picture holds for the 
estimates of v. We can see that undoubtedly the general qualitative trend obtained 
from the effective medium predictions is followed. On the other hand, crossover effects 
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Table 1. Enumeration data at g = 1.0, for (1 =0, 0.2, 0.4 and 0.6. 

( a )  (S,) series 

N a=O 0.2 0.4 0.6 

I 
2 
3 
4 
5 
6 
7 
8 
9 

I O  
I I  
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

2.000 000 00 
2.268 941 42 
2.537 882 85 
2.774 440 96 
3.015 978 74 
3.201 628 28 
3.404 368 78 
3.552 216 07 
3.724 806 70 
3.850 712 23 
4.001 936 17 
4.1 15 I33 45 
4.250 327 09 
4.355 006 70 
4.477 364 19 
4.575 333 58 
4.687 1 I5 01 
4.779 292 95 
4.882 324 61 
4.969 343 80 
5.065 145 53 

2.000 000 00 
2.299 159 88 
2.598 3 19 76 
2.834 727 34 
3.077 656 38 
3.259 538 65 
3.457 509 69 
3.602 488 83 
3.768 762 83 
3.891 220 28 
4.035 298 54 
4.143 650 57 
4.271 286 52 
4.369 878 09 
4.484 606 85 
4.575 688 19 
4.679 926 26 
4.764 795 57 
4.860 374 65 
4.939 907 59 
5.028 289 93 

2.000 OOO 00 
2.336 151 48 
2.672 302 96 
2.916 277 38 
3.167 142 12 
3.350 770 35 
3.548 838 36 
3.694 563 93 
3.858 001 72 
3.979 890 02 
4.1 19 422 14 
4.225 502 56 
4.347 519 90 
4.442 296 88 
4.550 81 1 73 
4.636 923 82 
4.734 658 47 
4.813'781 I O  
4.902 719 14 
4.976 013 86 
5.057 671 34 

2.000 OOO 00 
2.381 241 17 
2.762 482 33 
3.026 774 21 
3.296 700 04 
3.493 596 16 
3.701 915 38 
3.857 728 25 
4.026 929 65 
4.156 079 93 
4.298 347 72 
4.408 982 19 
4.531 554 58 
4.628 534 66 
4.726 054 01 
4.822 48 1 57 
4.918 12793 
4.996 1 15 70 
5.082 182 32 
5.153 250 38 
5.231 453 12 

( b )  ( R L }  series 
~~~~~~ ~ 

N (1 = o  0.2 0.4 0.6 

1 1.000 000 00 1.oO000000 1 .ooo OOO 00 1.oO0OOOoo 
2 1.075 765 69 1.196639 52 1.344 605 93 1.524 964 66 
3 1.578 635 91 1.715 973 07 1.903 982 55 2.162 758 62 

1.727 203 93 1.896 568 13 2.149 5 12 07 2.531 822 34 4 
5 2.083 882 56 2.260 705 26 2.540 064 24 2.992 872 03 
6 2.260 781 70 2.434 454 67 2.736 393 I O  3.268 439 52 

3.617660 17 7 2.532 900 69 2.709 965 53 3.029 164 71 
3.827 462 29 8 2.702 247 65 2.865 681 73 3.188 31699 

9 2.933 940 27 3.092 669 44 3.422 186 56 4.101 775 25 
I O  3.085 724 37 3.228 271 93 3.552 326 91 4.263 418 32 

3.427 597 23 3.74871431 4.485 490 58 I I  3.298 075 69 
12 3.433 781 91 3.546 007 54 3.856 817 79 4.61 1 734 38 
13 3.634 041 47 3.727 321 45 4.027 527 84 4.795 733 67 

3.832 430 60 4.119 12647 4.895 702 51 14 3.757 733 83 
15 3.947 570 42 4.000 03 1 83 4.270 901 84 5.051 11809 
16 4.062 925 77 4.095 241 35 4.350 163 09 5.131 42433 
17 4.242 602 58 4.25 1 246 82 4.487 135 22 5.264 845 47 
18 4.352 303 83 4.339 178 09 4.557 136 39 5.330 320 15 
19 4.522 161 49 4.484 938 40 4.682 067 3 I 5.446 491 77 

4.567 499 59 4.745 067 15 5.500697 41 20 
21 4.788 706 28 4.704 128 24 4.859 959 84 5.603 135 57 

4.627 97 I 9 1 

are strongly felt in the smoothing out of the finite lattice data (although such effects 
do become less pronounced as N increases). We discuss quantitative extrapolations 
of finite N data (via Neville tables) further on in this section. As concerns figure 2, 
we wish to recall the following. 
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Figure 1. 'Phase diagram' for the generalised random walk in one dimension as predicted 
by the Flory approach. Pure random walk behaviour occurs along the broken lines. 

( i )  In figure 2( a )  for g < 0, the apparently negative value of U is due to the fact 
that expression ( 1 Ob) was used in a region where one already has ( S , )  < ( S,-*), which 
signals the onset of the trapping region, in which the walk extent actually decreases 
for N larger than a certain critical value. 

(ii) For the special case a = 1, the finite lattice estimates for s are slightly off the 
exact value f, whereas for the ( R k )  series the exact value v =f is reproduced for any 
finite N. 
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At this point we can state that all the exponent predictions from fhe effective 
medium arguments regarding trapping ( a  > 1, g < 0) and self-avoiding walk behaviour 
( a  > 1, g > 0 and a < 1, g < 0) have been found to hold from our exact enumeration 
data. Accordingly, we now concentrate on the 0 S Q S 1, g > 0 region where anomalous 
diffusion is predicted. 

In this region we find that the finite lattice estimates of v against g exhibit a 
non-monotonic variation as a function of g. In fact the estimates consistently show a 
trough at a certain value of g before tending to the expected large g behaviour. For 
the ( R L )  series using odd-odd ratios this trough occurs at around g =  1.5. This effect 
is probably due to the finite length of the series, but is still strong at N = 2 1 and a = 0. 
This effect is not displayed in figure 2 ( c )  as the value tanh(g) = 0.9 (g = 1.47) is not 
yet in the region where the effect occurs for the span series. 

In attempting to find the asymptotic exponents from the series data, it is important 
to choose values of g that minimise the finite lattice and crossover effects. This choice 
is somewhat arbitrary, but we found that values of g near the trough described above 
tended to give the best results. The results of series analysis at a sample value of g 
are described below. 

Series extrapolations were peformed for various a at fixed g = 1.0, using Neville 
tables (see e.g. Gaunt and Guttman 1974). As can be expected from the variety of 
effects present in the problem, the Neville tables show considerable scatter. In general, 
the series for ( S )  behave better that those for (R’) .  Also note that for N = 21, ( R ’ )  
series at a = 0 are larger than ( R ’ )  series at a = 0.2, reversing the behaviour at small 
N (see table l ) ,  and a similar effect occurs in the ( S )  series. This can be explained 
from (8) by noting that a small value of a means a larger exponent but a smaller 
amplitude, thus, for small N the amplitude effect dominates and we see the ordering 
as in the first rows of table 1. At larger N, it is the largest exponent which matters 
and the ordering is eventually reversed. It is easy to show from (3 )  that indeed the 
first crossing, as N grows, is between the a = 0 and a = 0.2 walk. 

In table 2 we show our estimates of the exponents s and v obtained from Neville 
tables and for g = 1.0, as compared to the effective medium prediction (8). This table 
shows that although there is considerable scatter, the general trend predicted by (8) 
is clearly followed. In particular, the non-trivial feature that the exponents vary from 
f to zero as a goes from zero to one (see figure l ) ,  is explicitly shown. In addition 
the results are consistent with the scaling prediction s = v for fixed a. 

Table 2. Estimates of the exponents s and U (see text) found from Neville tables, compared 
with the values predicted from the effective medium approximation (8). 

a 5 U ( 1  - a ) / ( 3  - a) 

0 0.341 0.04 0.32 10.06 0.333 
0.1 0.32 * 0.04 0.27 1 0.06 0.3 10 
0.2 0.30 i 0.03 0.23 1 0.06 0.286 
0.3 0.27 f 0.03 0.20 * 0.07 0.259 
0.4 0.24 f 0.03 0.19 1 0.08 0.23 I 
0.5 0.22 f 0.03 0.15 +0.09 0.200 
0.6 0.191 0.03 0. I O *  0.10 0.167 
0.7 0.15 1 0.03 small 0.130 
0.8 0.09 1 0.04 small 0.09 I 
0.9 small small 0.048 
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5. Summary and conclusions 

We have discussed the asymptotic behaviour of one-dimensional correlated random 
walks in which configurations with multiple occupancy of sites are weighted by a factor 
proportional to the integral over the span of the a t h  power of the number of times 
each site is visited. Varying a between zero and two, and for attractive and repulsive 
correlations between repeated visits to a site, we have been able to explore the region 
between the interacting random walk of Stanley er a1 11983) ( a  = 0), and the Domb- 
Joyce model for a polymer chain ( a  = 2.0). Both effective medium and exact enumer- 
ation results have been used and for one dimension we reach the following conclusions. 

( i )  For repulsive correlations and O s  a s 2  (except at the special points g = O  
and/or a = 1) one always has the asymptotic behaviour of the self-avoiding walk, with 
end-to-end distance exponent v = 1. 

(i i)  For attractive correlations and 1 < a s 2 the walks always collapse upon the 
origin, which we denote by 'trapping' behaviour. 

(i i i)  For attractive correlations and O S  a < 1 we find anomalous diffusion, with 
exponents which vary continuously with a. 

Thus, while enabling us to proceed one step further towards a unified picture of 
the relevant features of correlated random walks, our results also set some general 
conditions for the existence of anomalous diffusion in one-dimensional systems. 

The general agreement between exact enumeration results and the picture emerging 
from the peculiar phase diagram of figure 1 adds weight to the simple effective medium 
ideas used in the derivation of the latter. However, we are still far from understanding 
why Flory-like approximations usually work (apart from the usual general arguments 
about a fortuitous cancellation of errors); we are just faced with the fact that they do 
work in one more, and a particularly complicated, case. 
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